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Introduction

Users of standard psychological tests must regularly face the
fact that the population of people for which a standard test was ini-
tially designed differs somewhat from the local population to which

the user plans to apply the tesi. Furthermore, the use for which the

test was initially designed often differs somewhat from the use which

the local user has in mind. These users must regularly ask whether
the time and expense involved in constructing a new test, tailor-made

to the characteristics of the local population and the local planned

use of the test, would be repaid by a noticeable improvement in

predictive power. If fitting tests to the characteristics of a
local situation regularly results in a large increase in predictive

power, then constructors of standard tests also have to begin to

consider the possibility of developing several tests to measure
each trait in different local situations, where previously they

have only constructed one test. If fitting the tests in this manner

regularly results in only a small increase in predictive power, then

this fact should be known so that test constructors can have more con-
fidence in the present procedure of constructing only a single test

for each trait to be measured.

The present paper reports on an attempt to determine empirically,

for several test-construction proUems, the amount of improvement
resulting when tests are tailor-made to fit certain particular characv

teristics of a local population and a local use for the test. By a

test-construction "problem," we mean a particular choice of the

following factors: (a) the variable to be predicted by the test (the

criterion variable), (b) the set of items from which the test items

are to be chosen (the item pool), (c) the method by which items are

to be selected from the test (the test-construction method), (d) the

population of people from which a sample is drawn. The individual
problems used in the study were chosen not from an interest in those

specific problems. Rather, the hope was that these problems would
be representative of a certain carefally-defined class of problems,

and further that the results of the study would be consistent enough

across the problems studied so that some: generalization could be

made with reasonable confidence to the entire class of problems. As

we will see, this latter hope was fulfilled; the results were highly

consistent across the different test-construction problems studied.

To help define the class of test-construction problems studied,

we will give an example of a problem in the class. Consider a

situation in which a test is to be used to discriminate between two

groups of people. The groups might be, for example, future school

dropouts and non-dropouts. Let these two groups be termed the

"criterion groups." Suppose that each pupil who takes the test is

given, on the basis of his test score, one of two treatments. One

treatment, for example, might be placing him in a special class with

a teacher trained to deal with potential dropouts, while the other
"treatment" would consist of leaving him in his normal class. Suppose
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the test is constructed by selecting dichotomous (yes-no) items from
a large pool of items, on the basis of the items' ability to discri-
minate between a particular sample of known dropouts and another
sample of non-dropouts. The present project is confined to situations
with all of the above characteristics: two criterion groups of people
which are to be distinguished by a test, two treatments, of which one
is to be administered to each subject on the basis of his test score,
tests constructed empirically by selecting from a large pool of dicho-
tomous items those items which discriminate well between samples of
people from the two criterion groups. We assume also that there is
a "flexible quota;" that is, there is no predetermined number of sub-
jects to be assigned to each of the two treatments. Rather, each
subject is assigned to the treatment deemed best for him. The oppo-
site, "fixed quota," situation is often found in college admissions,
say, where the two treatments are admission and non-admission, and
the number of students to be admitted is fixed in advance.

We turn now to a description of the characteristics of local
situations to which tests were tailor-made in the present study.
There were two such characteristics. Again we will begin with an
example.

Suppose a test constructor is constructing a test to identify
future dropouts. He selects for his test those items which, on the
basis of a previous sample of students, best discriminate between
dropouts and non-dropouts. Suppose two Yes-No items are being com-
pared for relative value in this situation. Item #1 is answered
''Yes" by all dropouts and by half of all non-dropouts. Item #2 is
answered "No" by all non-dropouts and by half of all dropouts. If
students answering "Yes" are identified as dropouts and students
answering "No" are identified as non-dropouts, then Item #1 mis-
classifies no dropouts but half of all non-dropouts, while Item #2
misclassifies no non-dropouts but half of all dropouts. Therefore,
whether Item #1 or Item #2 misclassifies more people depends upon
whether dropouts are more common than non-dropouts. We conclude that
one characteristic of a local situation which should be considered
in test construction is the relative sizes of the two criterion
groups, We will call these relative sizes the base rates. Base rates
were one of the two characteristics of a local situation to which
tests were tailor-made.

To introduce the second characteristic, we will go on with the
last example. Suppose that in school C students identified as drop-
outs are put in a special "dead end" class which would be quite
injurious to the future of a non-dropout, while in school D students
identified as dropouts are shown a special movie discouraging dropping
out but are otherwise treated as other students. In school C incor-
rectly identifying a student as a dropout is a much more serious error
than in school D. In school C, therefore, it would be much worse to
replace item #2 by item #1, which misclassifies more non-dropouts as
dropouts, than in school D. In other words, the relative value of the
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of the two items changes from school to school since the relative
seriousness of the two types of treatment error (treating a dropout
as a non-dropout vs. treating a non-dropout as a dropout) changes.
We will call this characteristic of a local situation the relative
seriousness of errors. It was the second of the two characteristics
which tests in this project were tailor -made to fit.

Purpose

The purpose of the project was to estimate, for several test-
construction problems, the increase in test value (in applying the
test to a particular local situation) which results when the above-
mentioned two aspects of the local situation (base rates, and rela-
tive seriousness of the two types of treatment error) are taken into
consideration in the construction of the test. More specifically,
the purpose of the project was to estimate, for several test-
construction problems, how much more valuable is a test which is
constructed using the values of the base rates and seriousness-of-
errors factors which apply to the situation in which the test is to

be used, than are tests which are used in that same situation but
which were constructed assuming other values for these two factors.

Preliminary work

The above formulation of the purpose of this project immediately
raises two questions. First, how do we take the base rates and
seriousness-of-errors factors into consideration in constructing
tests? Second, how do we measure the "value" of a test in a specific
situation?

Neither of these two questions can be dealt with rationally
unless we first assume that the seriousness of an error can be
measured; or at least unless we assume that the relative seriousness
of two errors can be measured. Although such measurements are ex-
tremely difficult, there is no doubt that in actual practice we make
judgments every day which require us to estimate, at least subjec-
tively, the relative seriousness of two different errors. A rational

person postpones a drive to another city on a snowy day, not because
he thinks he will probably have an accident, bit because if he does
have an accident the resulting loss is likely to be much greater than
the loss of convenience resulting from postponing the trip. A coun-

selor might spend $100 of his time talking to a student who has hinted
he might become a dropout, not because the counselor thinks he will
probably drop out, but because if he does drop out the loss will be
much greater than $100. To ignore the problem of relative seriousness
of errors generally leads one to act as if all errors were equally
serious. This solution does not avoid the question at all; it simply
substitutes an arbitrary and obviously incorrect assumption for what-
ever alternative assumption might be made by a careful study of the

situation. The assumption that some numerical value, however
arbitrary, can be assigned to the relative seriousness of two errors
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is the central assumption underlying decision theory. The general
point is expanded by Cronbach and Gleser (1), which is the first work
to apply decision theory in a major way to the area of psychological
testing. (See especially Ch. 10 for a discussion of the rationality
of attempting to measure the relative seriousness of two errors.)

Given that there is some way of measuring, or at least estimating,
the relative seriousness of the two types of treatment error in a two-
treatment situation, we turn now to the first of the two questions
posed abovehaw do we take into consideration the base rates and
seriousness-of-errors.factors when we are constructing a test? We

shall first consider base rates alone.

Consider a situation in which the two types of treatment error
are equally serious (for example, misclassifying a future dropout
as a non-dropout is exactly as serious as misclassifying a future
non-dropout as a dropout). In this situation, the objective of a
test is simply to minimize the total number of errors of classifica-
tion. In this simplified situation, how should base rates,be con-
sidered in test construction? The classical method of considering
base rates is simply to let the relative sizes of the two samples of
people used in the item-selection process be the same as the relative
sizes of the groups they represent in the population. Thus, if non-
dropouts are three times as common as dropouts, then the classical
procedure dictates that these same base. rates should be. used in the
samples of people whose data are used for test-construction.

But suppose the samples of people available to the test-construc-
tor do not have these relative sizes, and there is no practical way
to gather more data. Should he simply throw away data from the group
which is too large, or is there a better way? We propose that a
better way would be as follows,

Suppose a test-constructor is using the phi coefficient as the
index which he uses to select items. That is, he computes the phi
coefficient (0) showing the ability of each item in an item pool to
discriminate between the two samples of people he is using, and
selects for his test those items for which phi is highest. As is

well known,

(1) =
ad - be

1.(a bXe d)(a 000 d)]2di
where

a = proportion of the total population of people which is in
criterion group A and which also answers "yes" to the item
in question,

b = proportion of the total population which is in criterion
group A and which answers "no" to the item in question,
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Thus

c = proportion of the
group B and which

d = proportion of the
group ..., and which

a +b+c+d= 1.

Let

131

total population which is in criterion
answers "yes" to the item in question,

total population which is in criterion
answers "no" to the item in question.

= proportion of criterion group A answering
item in question,

"yes" to the

p
2

= proportion of criterion group B answering "yes" to the item,

P = proportion of total group which is in criterion group A.

Then we can express a, b, c, and d in terms of p1, p2, and P, by the

formulas

a =

b = (1-p1)P

c=p2(1-P)

d = (1-p2)(1-P).

Thus a test-constructor can use his actual sample data (without

throwing any away) to estimate pi and p2, the proportions of the two

criterion groups answering "yes"' to an item. If he is trying to con-
struct a test for a local population (for example, a particular
school) with a particular value of P, then he can enter that value of
P, along with his empirical values of p1 and p2, into the last four

equations, and thereby estimate the values which a, b, c, and d would
assume in that local population. He can then insert those values sf
a, b, c, and d into formula (1) to find an estimate of the phi coef-
ficient which that item would have in that local population. He can

do this even if the relative sizes of the two criterion groups in
his samples of people are grossly different from the relative sizes
of the criterion groups (measured by P) which exist in the local
population for which he is developing the test.

We have described in detail the procedure an investigator would
use if he were using the phi coefficient as an index for item selec-

tion. Procedures analogous to those above can be (and were) developed
when indices other than the phi coefficient are used for item selec-
tion. These will be described in more detail later.
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We have seen above a method for considering criterion-group base
rates in constructing a test. These base rates were one of two fac-
tors mentioned above which should be considered in constructing a
test. The other factor was the relative seriousness of the two types
of errors of misclassification--misclassifying a member of criterion
group A as a member of group B, and misclassifying a member of group
B as a member of group A. How should this second factor be taken
into account in test construction?

Suppose each misclassification of a member of the first cri-
terion group is judged to be three times as serious as a misclassifi-
cation of a member of the second criterion group. Then the choice
of treatment for each member of the first group is three times as
important as the choice of treatment for each member of the second.
Hence it seems intuitively clear that in the test-construction pro-
cess, each member of the first group should be given three times the
weight given to each member of the second group.

For example, suppose a test is being developed for a school in
which dropouts and non-dropouts are equally common. Then using the
above notation, P = .5. But suppose a highly effective counseling
program is available, so it is decided that failure to identify a
future dropout is three times as serious an error as incorrectly
labelling a non-dropout as a dropout. Then in the test-construction
process, the way to take into consideration the fact that the cor-
rect treatment choice for each potential dropout is three times as
important as the treatment choice for each non-dropout, is to pretend,
during the test-construction process, that there are actually three
times as many dropouts as non-dropouts. In other words, even though
the test-constructor knows the base rates are .50 and .50, he should
enter into his item-selection formulas base rates of .75 and .25,
since .75 is three times as large as .25. This should be done when
he is calculating indices of item value. Thus, for example, if he
is using the phi coefficient as the index of item value, then when he
is calculating a, b, c, and d from pi, p21 and P in the manner des-
cribed earlier, he should let P in the formulas be .75 instead of .5.

We will now state in more general algebraic terms the procedure
we have just described in terms of a specific example. Let P' be
the P-measure reflecting the actual base rates in a certain local
population. (In the example just given, P' = .5.) Let P be the P-
value which the test-constructor is going to "pretend" exists. (In
the above example, P = .75.) Let UA and UB equal the seriousness of
the two types of treatment error. Then the procedure illustrated in
the example amounts to finding a value of P such that P/(1-P1 (the
"pretended" relative base rates of the two groups) exceeds P /(1-P')
(the actual relative base rates) by a factor of UrA/UB. (In the above
example, Urii/UB = 3.) That is, the problem is to find P such that



UA
(2) P = P ----

1-P 1-PI UB

In the above example, where P' = .5, and UA /UB = 3, this equation
becomes

P -c

1-P
3

.5 '

which is fitted when P = .75.

Formula (2) can be rearranged algebraically to give

(3) P

U
P' UA
1-P' U73

01111111M

Pi UA
+ 171ST

Thus a test-construction procedure which considers both cri-
terion-group base rates and the relative seriousness of errors in a
local situation is to first estimate P' and UA/UB for that situation,

then compute P from (3), and then use this value of P along with pi

p2 in computing a phi coefficient or other index of item usefulness.

Thus, a test can be tailor -made to fit a situation with given
values of P', UA, and UB by constructing a test to fit an imaginary

new situation in which the two types of treatment error are equally
serious, and in which the base rate of the first criterion group is
P, where P is calculated from (3). The same test fits both the real
and the imaginary situation, and in fact fits all situations in
which that same value of P would be calculated from P', UA, and UB.

A preview of the design of the present study

The above considerations suggest the possibility of constructing
a set of tests in which the first test in the set is constructed to
fit a P of .05, the second test is constructed to fit a P of .10, and
so on, with the last and 19th test being constructed to fit a P of
.95. Then for any situation, a P-value could be calculated for that
situation from the actual values of P', UA, and UB in that situation.

Then a worker could select from the set of 19 tests the one test con-
structed to fit the P-value closest to the P-value of the new situa-
tion. That test would then be the one which should be applied to the
new situation.

We saw above that a particular test-construction method will
construct the same test for all test-use situations for which the
same value of P is calculated from formula (3). Since constructing
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a test involves comparing the values of items, another way of stating
our conclusion is that the relative values of items in a situation
can be computed merely from knowing P for the situation; the values
of P', UA, and 1j/i3 need not be known separately. But what is true for

items should also be true for tests; it should be possible to com-
pute the relative values of several tests in a situation from know-
ing only the P-value of the situation. Thus if we have a set of
tests, the same test should be the best test in the set for all
situations with the same value of P.

We are thus led to the following conclusion. Suppose a table
were available in which the first column shows the relative values
of each of several tests in a situation in which the base rate of
the first criterion group is .05 and in which the two types of treat-
ment error are equally serious. Suppose the second column of the
table shows the relative values of those same tests in a situation
in which the base rate of the first criterion group is .10 and in
which the two types of treatment error are equally serious. Suppose

that there are 19 columns of the table altogether, each showing the
relative values of the tests in situations with different base rates
but keeping the assumption that the two types of treatment error are
equally serious. The base rate for the third column would be .15,
for the fourth would be .20, and so on, with the base rate for the
19th column being .95. Then if there were a real-life situation in
which the two types of treatment error were not equally serious, it
would be possible to calculate P for that situation from formula (3),
and then go to the column of the table with the base rate closest to
that P. The entries in that column would then show quite accurately
the relative values of those several tests in that real-life situation.

Suppose further that the several tests whose values were listed
in the table were the 19 tests referred to above, constructed to fit
19 different values of P. Then the first entry in the first column
of the table would be the value, in a situation in which P = .05, of
a test constructed to fit a situation for which P equals that same
value of .05. Going down the column would give the values in that
same situation of tests constructed to fit increasingly different
P-values. Hence the first entry would be expected to be the highest
entry in the first column. By the same reasoning, the highest entry
in the second column would be expected to be the second entry, and
in general the highest entry in each column would be expected to be
the entry falling on a diagonal line running from the upper left cor-
ner of the table to the lower right corner. In any given column of
the table, the farther away an entry is from this diagonal line, the
smaller the entry would be expected to be.

But how much smaller would these entries be than the entries near
the diagonal? If they are much smaller, it would mean that it is very
important, when constructing a test for a specific situation, to use
in the test-construction process the exact P-value which applies to
that situation. If the entries far from the diagonal are only very



slightly smaller than the entries near the diagonal, it would mean
that it is not very important to consider a situation's P-value when
constructing a test to be used in that situation. It would further
imply that a single test could be used in situations with diverse
P-values, with results almost as good as could be achieved by con-
structing many tests to fit the different situations.

The present project constructed 12 such 19 x 19 matrices. Each
matrix was the result of applying a different one of four test-
construction methods to a different one of three sets of data.

More preliminary work

Before we turn in more detail to the design of the project, we
must first consider the second of the two questions posed above.
The first question, which we have now answered, is how we take into
consideration, in the process of test construction, the base rates
and relative seriousness of the two types of treatment errors. The
second question, to which we now turn, is how we estimate the "value"
of a test, or at least the relative values of two tests, in a situ-
ation with specific values of P' and U.A. and UB.

This question was considered in two papers by Darlington and
Stauffer (3, h). The second of these two papers describes a method
for finding the optimum cutting poini on a test (that is, the point
such that people with test scores above the point should receive
treatment A while people with test scores below the point should
receive treatment B) as a function of the mean test scores of the
two groups of people, the standard deviations of the test scores of
the two groups, and the relative seriousness of the two types of
treatment error. The formula assumes that the test scores of each
of the two groups of people are normally distributed..

Once this cutting point has been found, the only characteris-
tics of the test which are relevant to its evaluation are the pro-
portions of each of the two criterion groups with scores falling on
each side of the cutting point. Since the test has thus been dichoto-
mized by the cutting point, it can be evaluated by using the same
formulas used to evaluate a dichotomous item. The procedures for
evaluating such a dichotomous item were described in the first of
the two papers by Darlington and Stauffer. That paper is basically
an exposition of elementary decision theory as it is applied to the
use and evaluation of discrete tests. Fortunately, in the present
study we can avoid most of the complications in that paper, because
we have seen above that we need to measure test values directly only
in situations in which the two types of treatment error are equally
serious. In such cases the obvious measure of test value is simply
the number of correct classifications made by the test, expressed as
a proportion of the total number of classifications made. In the
present project, we subtracted from this number the base rate of the
larger criterion group (that is, the larger of the two numbers P and
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1-P), since this is the proportion of the total population which

could be classified correctly if we simply classified everyone, in

the absence of any test information, in the larger of the two cri-

terion groups. Thus the actual measure of test value, which we will

call V, is the increase in the overall proportion of correct classi-

fications resulting from use of the test. For example, if a given

test classifies correctly .8 of the members of the first criterion

group, and .7 of the members of the second, and if P is .6, then the

overall proportion of correct classifications made by the test is

.8 .6 + .7 .4, or .76, so V, the value of the test, is

.76-.6, or .16. If cA is the proportion of the first criterion group

classified correctly by the test, and cB is the proportion of the

second criterion group correctly classified, and if M is defined as

the larger of the two numbers P and (1-P), then our definition of

V amounts to

V = cAP + cB(1-P)-M.

This formula provides the answer to the second of the two questions

raised above--how do we measure the value of a test?

A proof

In the foregoing discussion we have relied on the reader's

intuition to establish the point that the relative values of several

tests will be the same in all situations for which the same value

of P is calculated from formula (3). We will now establish this

point more formally. The present subsection can be skipped by readers

who are already convinced of the truth of the assertion.

The seriousness of decision errors can be measured in any con-

venient units. In mental hospital settings, it might be measured in

the number of months by which a patient's stay is lengthened as a

result of being assigned to an inappropriate treatment. In indus-

trial and commercial settings the unit of measurement is usually

dollars. Although a measure in dollar terms is often not appropriate

in educational settings, we will nevertheless use this in an example,

because of ilds ready understandability and simplicity.

Consider a situation in which P' = .6, UA = $3, and UB = $5.

Assume that the first criterion group (whose (Daze. rate is P') is the

group for which treatment 1 is appropriate, and that the second group

(whose base rate is 1-P') is the group for which treatment 2 is

appropriate. Then suppose treatment 1 were being given to everyone

and it was being considered whether treatment 2 would be better. From

the above numbers we see that for .6 of the total group, a switch to

treatment 2 would produce a loss of $3 per person, while for .4 of

the total group it would produce a gain of $5 per person. Thus the

-10-
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average gain resulting from the shift is

.4 $5 - .6 $3,

or $2.00 - $1.80, or $.20. Thus the average gain is positive, and
treatment 2 is better for the total group if no test is being used.

Suppose now a test is introduced which correctly classifies .8

of group 1 and .7 of group 2. Consider the strategy of giving treat-

ment 1 to everybody above the cutting point (that is, oil the side of

the cutting point toward which most members of the first group fall),

and treatment 2 to everybody below the cutting point. Switching to

this strategy and away from -Ghc strategy of giving treatment 2 to

everybody (which was the best strategy available without use of a

test) produces the following results:

(a) the proportion of the first criterion group treated cor-
rectly rises from 0 to .8, at an average gain of $3 per

person correctly classified. Thus the mean gain for this

group is .8 $3, or $2.40.

(b) the proportion of the second criterion group treated cor-
rectly falls from 1.0 to .7, at an average loss of $5 per

person incorrectly classified. Thus the mean loss for

this group is .3 $5, or $1.50.

Recalling that the base rates for the two groups are .6 and .4, the

mean gain in the two groups taken together resulting from using the

test is

.6 $2.40 - .4 $1.50

or $1.44 - $.6o, or $.84. Since introducing the test has resulted

in a mean gain of $.84 per person in the two groups together, $.84

is called the mean value per person of the test, which we denote by

V. V is the measure of test value used in this report.

Consider now the problem of stating the procedure just described

in terms of an algebraic formula. Let cA and cB be the proportions

of the two criterion groups correctly classified by the test. (In

the above example, cA was .8 and cB was .7.) Recalling that UA was

$3 and UB was $5, we see that $2.40 in the above example was cA UA,

and $1.50 was (1 - cB) UB. Recalling that .6 and .4 represented

P' and (1-P') respectively, the above procedure amounted to using the

formula



This formula simplifies algebraically to

(4) V = P'UAcA + (1-P')UBcB - (1-P')UB.

If we were to repeat the above line of reasoning in an example in
which the treatment best for group A was the treatment which should
be used for everyone in the absence of a test, we would arrive at
the formula

(5) V = P'UAcA + (1-P')UBcB - PTA

instead of (4).

Formulas (4) and (5) give the value of a test in situations of
the sort considered in this paper. Consider now the ratio between
the value of two tests j and k. Let cAj and cBj be the proportions

of the two criterion groups classified correctly by test j, and let
c
Ak

and cBk be the proportions of the two criterion groups classified

correctly by test k. Starting with (4), the ratio of the values of
the two tests is

V. pluAcm+ (1-P')UBcBj - (1-P')UB

(14"-YUB/ Vit P' A Akc + (1P-' U

Dividing both the numerator and denominator of the right side of (6)
by (1-POUB gives

! 4tc . + c . .. 1

V Q.

U
121
p ut AJ BJ

(7) 17;

1-P'
B Ak Bk

c c - 1

If we had started with (5) instead of with (4), we would have gotten

(1.4), UB

V cAj
+`

UA cBj 1

( ) Vk UB

cAk P' ) cBk

Thus (7) gives the ratio of the value of two t-cnts when the treat-
ment appropriate to the second group is the best treatment to give
everyone in the absence of a test, and (8) gives that ratio when
the treatment appropriate to the first group is the best treatment
to give everyone in the absence of a test.

No matter whether (7) or (8) is the appropriate formula for the
relative value of two tests, inspection of the formula shows that



4

the relative value of two tests in a specific situation is affected
only by the proportions of the two groups correctly classified by each
of the tests (these proportions are unaffected by P', UA, and UB), and
by the value of

15,
UA

1-P' UB

for the situation. But formula (2) shows that any two situations
which have he same P value will also have the same value of

P' UA
...--

1-P' UB

We thus reach the conclusion we sought to prove in the present sub-
section: the relative values of several tests are the same across
all situations which have the same value of P.

Method

In reading the following procedures, it should be remembered
that the primary purpose of this project is to make a statement about
the general importance, for any type of prediction problem and any
test construction method, of tailor-making a test to fit a specific
situation. The descriptions of the specific data sets used are thus
briefer (in accordance with the request for brevity in the Instruc-
tions) than they would be if we were interested in those data for
their own sake. To a much smaller extent, this is also true of the
descriptions of the test-construction methods used.

Subjects and test-construction problems

Three different test-construction problems were used. The first
problem involved using the MMPI to discriminate 96 hospitalized
schizophrenics from 250 nonschizophrenic mental hospital inpatients.
The second involved discriminating 112 high-IQ children from 115
retarded children, through the responses of each child's mother to
the 600-item Children's Personality Inventory. The third involved
using the MMPI to discriminate 136 paranoid schizophrenic mental
hospital inpatients with low scores on the MMPI paranoid scale, from
134 nonschizophrenic inpatients with low scores on the paranoid
scale. In the first set of data, 29 schizophrenics and 83 nonschi-
zophrenics were set aside as a cross-validation sample. In the
second set, 40 high-IQ children and 40 low-IQ children were set
aside -. In the third set, 48 patients from each of the two criterion
groups were set aside. The remainder of each set of data was
regarded as the test-construction sample in the analyses described
below.

, earahogtiinrit
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Test construction cess

For each of the above-described three sets of data, four sets
of 19 tests each were constructed. Thus the total number of tests
constructed was 3 x 4 x 19, or 228. The four sets of tests differed
from each other in that each set used a different test-construction
method. The 19 tests within a set differed from each other only in
the value of P assumed in the item-selection process. In the first
test within each set: P was .05. In the second test within each
set, P was .10. For the third, fourth, and other tests within each
set, P was .15, .20, ..., .95.

As was just mentioned, four test-construction methods were
used. All four of these methods were procedures for selecting,
from a pool of several hundred items, a smaller number of items
for inclusion in a test. In all cases, the selected items received
unit weights; there was no attempt at differential weighting. Two
of the four methods of evaluating items used just P and pl and p2,

the proportions of the two criterion groups answering "Yes" to the
item. The other two methods used additional information which will
be described later in this subsection. Within the bounds of the
study, the four methods were chosen to represent the major types of
test-construction methods in general use.

Method 1 was the method which was described in detail in the
Introduction, using the phi coefficient (0). The four numbers a,
b, c, and d were computed for each item by the formulas

a =p
1
P

b = (1-p1)P

=p
2
(1-P)

d = (1-p2)(1-P).

For each item, 0 was then computed by formula (1). The 36 items
for which the absolute value of 0 was highest were selected for the
test. Of course, for the items in the 36 for which 0 was negative,
the scoring direction of the item was reversed before the item was
included in the test. That is, if 0 for an item was positive then
a "Yes" answer increased the subject's test score. If 0 for the
item was negative, then a "No" answer increased his score.

Method 2 was more complicated, It used a technique described
by Darlington and Bishop (2). The intent of the technique is to
start with a "first - stage" test, then to add to that first-stage
test those items in the item pool which are most able to improve
that test. The ability of an item to improve the first-stage test
increases with the item's validity, but decreases as the item's cor-

relation with the first-stage test increases. The specific index
used to measure an item's ability to improve the first-stage test was

.1011111WMPOR101.61.01.40,..



the partial correlation between the item and the criterion variable,
partialling out the first-stage test. For each of the 19 tests con-
structed by Method 2 for a particular one of the three sets of data,
the test used as a first-stage test was the test constructed by
Method 1 for that same data set and that same value of P.

The partial correlation coefficient is computed from the three
simple correlation coefficients rci, rct, and rit, where c is the

criterion variable, t is the first-stage test, and i is the item

in question.

It will be recalled that tie purpose of the test-construction
phase of the project was to construct, from a single set of data,
a series of tests in which each test was designed to fit a situa-

tion with a different value of P, where P is thought of as the base

rate of the first criterion group in an imaginary situation in

which the two types of treatment error are equally serious. Thus

in Method 2 we face the problem of estimating, from the single set

of data, the values which rci, rct, and rit would have in situa-

tions with different values of P. The item-criterion correlation
rci is the only one of these three correlations which we have

essentially already discussed. Since c and i are both dichotomous,
the correlation between them is the phi coefficient, and we des-

cribed in the Introduction the means for estimating the value which

a phi coefficient would assume in a population with a given value

of P. We must now consider rct and rit. Since t is a continuous

variable (the first-stage test), both rct and rit are point-biserial

correlations. We will consider first the problan of estimating,
from a single set of data, the values which rct would assume in

populations with different values of P.

The basic problem is to express the point-biserial correlation

coefficient as a function only of P and of several quantities which

would not be expected to differ across populations with different

values of P. We faced a similar question earlier in connection
with estimating the values which phi coefficients would assume in

situations with different values of P, and we solved it by expres-
sing the entries in the phi coefficient (that is, a, b, c, and d)

as functions of P and pl and p2, the proportions of the two criterion

groups answering "Yes" to the item in question. These numbers pl

and p2 fit the above-mentioned specification--they would not be

expected to differ in populations with different values of P. The

problem is to find a similar set of numbers, and a set of formulas

for computing the point-biserial correlation coefficient from them.

Expressing rct in terms of the familiar formula for a point-

biserial correlation gives the formula

-15-
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where TA and TB are the mean test scores of the two criterion groups

respectively, and where st is the overall standard deviation of the
test scores. P is, as throughout this paper, the assumed base rate
of the first criterion group in the situation for which the test is
to be constructed, and in which the two types of treatment error are
imagined to be equally serious. The .quantities TA and TB are already
expressed in acceptable form, since they would not be expected to
vary across several populations which differed only in P. However,
at is not in acceptable form; in general, the standard deviation of
the test would be affected by P. This problem is handed as follows.

First express st in terms of the familiar standard deviation
formula

ZT2 -2- Tst

where T's are individual test scores and T is the overall mean of
the test scores. But T can be thought of as a weighted average of
TA and TB, wheee the weights are P and (1-P). That is,

= P YA + (1-IP) f136

TA and TB fit our stipulation for entries into r
ci' they should not

vary across populations with different values of P.

The term -2.--T2/N which appears in the formula for st can be
handled in much the same way we just handled T. It is actually the

mean value of T2 in the population, so it can be expressed by

2E T
N = P + (1-P) T

2

B '
T2

2 2
where TfiLand TB are the mean values of T2 in the first and second

criterion groups respectively.

Thus we proceed as follows in estimating the value which !bet

would have in a situation with a given value of P. We enter that
value of P into the last two formulas, along with the values of TA,

B*P .10
T2 and T2 observed in our sample data. The values of TA and



ZT2it thus computed are entered into the above formula for st.
That value of st is then entered into the above formula for ret,
along with the same values of "fm 110 and P used before.

A similar procedure was used to find rit, which like rci is
a point-biserial correlation coefficient.

Once rev rot, and rit were found by the procedures described
above, they were entered into the partial correlation formula

r - r r
el ct -itr

ci.t
N/ 1 - rr

ct -I-
rit

0

This quantity was computed for each of the several hundred items in
the item pool, for each of the 19 values of P. For each value of P,
the 9 items for which the absolute value of rci.t was highest were
added to the 36-item first-stage test to form a 45-item second-stage
test. For reasons analogous to those described in connection with
Method 1, the items for which reit was negative were scored negatively.

Method 3 was quite different from Methods 1 and 2. We saw in
the Introduction the formulas which would be used if one were to
evaluate a test or a dichotomous item in terms of the increase in
the proportion of correct classifications resulting from use of the
test or item. These same formulas provided the basis for item selec-
tion in Method 3. That is, in each of the three sets of data and
for each of the 19 values of P, we computed the estimated increase in
the proportion of correct classifications resulting from using each
item (alone, not in a test). This is a measure of item usefulness
which is similar to, but definitely different from, the phi coeffi-
cient relating the item to the criterion variable. Since the formulas
used were described in detail in the Introduction, we will not repeat
them here, even though there the discussion was in terms of tests
and here the discussion is in terms of individual items. The formu-
las are the same in the two cases. Once these numbers were computed
for a given set of data and a given value of P, the 36 items for
which the numbers were highest were selected for a test. As in the
other methotts, the entire procedure was repeated 19 times, for dif-
ferent values of P, within each of the three sets of data.

Method 4 was the only one of the four test-construction methodswhich was developed for this project. It was by far the most compli-
cated of the four test - construction methods. We found that it was
also by far the most consuming of computer time; problems for which
Methods 1, 2, and 3 took about 5 minutes each, consumed about 2 hoursof the computer's time for Method 4. Later, on cross-validation, the
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tests constructed by Method 4 were not noticeably better than those

constructed by other methods. Method 4 was thus basically a "flop."

For completeness, we will nevertheless include here a description

of the method.

Method 4 had much the same relation to Method 3 that Method 2

had to Method 1. That is, Methods 1 and 2 were both within a cor-

relational framework, and Method 2 used as first-stage tests the

tests constructed by Method 1. Methods 3 and 4 were both within the

framework of measuring item value by the increased proportion of cor-

rect classifications resulting from use of the item, and Method 4 used

as first-stage tests the tests constructed by Method 3. The essence

of Method 4 was a method for estimating which items, when added to a

test constructed by Method 3, would raise by the largest amount the

proportion of correct classifications resulting from use of the test,

assuming that the test scores are normally distributed within each

of the two criterion groups. This was done by adding each item in

the item pool separately to the 36-item first-stage test, then com-

puting the mean and standard deviation of test scores for each of

the two criterion groups. These means and standard deviations were

then entered into the above-mentioned formula developed by Darlington

and Stauffer (4) fc:- finding the optimum cutting point on the test.

Once the cutting point was found, normal curve tables were used to

compute, from the mear and standard deviation of test scores for each

criterion group, the proportion of each criterion group falling on

the correct side of the cutting point. These two proportions were

then weighted by P and (1-P) to give an estimate of the overall pro-

portion of correct classifications resulting from use of the original

36-item test with the one additional item added to it. This pro-

cedure was repeated hundreds of times, each time using as the one

additional item a different one of the several hundred items in the

item pool. The 9 items for which this statistic (the overall pro-

portion of correct classifications) was highest, were then added all

at once, as 9 items had been added all at once in Method 2, to the

original 36-item test to form a 45-item test. As in the previous

three methods, this procedure was repeated using 19 different values

of P in each of three sets of data.

Cutting points

We have mentioned earlier that the correct cutting point for

a test depends upon the P-value of the situation in which the test

is to be used. Construction of the 19 x 19 value matrices mentioned

above involves measuring the value of eacia of the above tests in

situations with different values of P. Hence for each test we calcu-

lated the optimum cutting point for each of the 19 values of P.

Besides P, the entries in this formula are the means and standard

deviations of the test scores for each of the two criterion groups.

These means and ,tandard deviations were computed in the test-

construction samples, and the 19 cutting points for each test were

then calculated.



Cross-validation and the value matrices

We have described above a process by which 4 sets of 19 tests
each were constructed for each of three sets of test-construction
sample data. As mentioned earlier, corresponding to each of these
sets of data was a cross-validation sample of data, which had not
been used in the test-construction process. Using exclusively these
cross-validation sample data, twelve 19 x 19 matrices of test values
were constructed by the method outlined in the introduction. Con-
structing each of these 12 matrices involved the following steps:

(a) Let cAjk and cBjk be the proportions of the two criterion

groups classified correctly, in the cross-validation sample, by the

.11th test with its kth cutting score, where subjects with test scores
above the cutting point are classified as being in the first cri-
terion group, and subjects with scores below the cutting point are
classified as being in the second criterion group. Then cAjk and

cut were computed for each value of j and each value of k from 1

to 19, forming a 19 x 19 matrix of values for each of the two sta-
tistics. cAjk and cBjk are the estimated proportions of correct

classifications in the two criterion groups achieved by applying

the eh of the tests to a population with the kth of the 19 values
of P, with the cutting score on the test chosen to maximize the
number of correct classifications for that value of P.

(b) If the kth value of P is denoted by pat, then

(9) cAjkPk cBjk(1-Pk)

is the estimated overall proportion of correct classifications by

the eh test when used in a population with base rate Pk, The

larger of the two values Pk and (1 -Pk) is the largest overall pro-

portion of correct classifications possible without the use of a
test; it is achieved by classifying all persons as members of the
larger criterion group. If we define Ei as the larger of the two

values El, and (1-Ex), then subtracting Mk from (9) gives the esti-

mated increase in the number of correct classificatioals (expressed
as a proportion of the total population) achieved by the use of
test 1. If we denote this quantity by Vjk, and term it the value

of the jth test in a population with base rate Pk, then we have

(10) Vjk = cAjk Pk cBjk (1-Pk)
Mk.

Vjk was computed for each of the 19 values of j and 19 values of k,

forming a 19 x 19 matrix of test values. Each column of this matrix
showed the values of 19 tests in a situation with a specific value
of P. The -ationale for this procedure was described in detail on pp.
7-10; those pages should be reviewed by readers for whom the present
procedure or its :rationale seems unclear.

-19-
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Each of the twelve 19 x 19 matrices constructed by this procedure
related to a particular one of the four test-construction methods
and a particular one of the three sets of data. Each of the 12
matrices showed the relative values, as estimated from cross-valida-
tion sample data, of 19 different tests in each of 19 different
situations with different values of P. The 19 different tests in a
matrix had all been constructed using the same one of the four test-
construction methods, but the 19 tests had been constructed indepen-
dently so that they were tailor-made to fit situations with different
values of P.

Results

As described in the Introduction, the major question of interest
in the present project was whether tests constructed for a situation
with a given value of P were more valuable in that situation than
were tests which had been constructed to fit situations with dif-

ferent values of P. Phrased in different terms, are the entries
falling on the upper-left-to-lower-right diagonal of a given one
of the 19 x 19 matrices noticeably larger than entries in the same
columns but far from the diagonal? The answer to this question is

very simple: no. Although Table 1 shows only a small fraction of
the total mass of data produced by the analyses described above, it
is fully adequate to show the trend of the data. Table 1 contains

twelve 2 x 2 matrices. Each of these twelve 2 x 2 matrices contains
four elements from a different one of the twelve 19 x 19 matrices;
the four elements show the value of each of two tests in situations
with two different values of P. In the first two of the three sets
of data the P values used were .3 and .7. In the third set, test
values were all very low for those P values, so P values of .4 and

.6 were used. In each of the twelve 2 x 2 matrices, the upper left
and lower right elements show the estimated vale of two tests in
populations with the P values for which the test, 're designed. The

remaining two entries (lower left and upper right) show the estimated
value of each test in a population with the P value for which the
other test was designed. Comparing the two numbers within a column
of any of the twelve matrices compares the estimated value, in a
population with a given P, of a test constructed for that P, and a
test constructed for a very different P. The former of the two num-
bers would be predicted to be higher, the question being how much
higher. Of the 24 such comparisons that can be made in Table 1, only
8 (less than half) even show the difference to be in the predicted

direction. Nor are the differences in the predicted direction larger
than the others; if the 8 differences in the predicted directions are
considered positive and the remaining 16 differences considered nega-
tive, the mean of the 24 differences is negative. Further, inspec-
tion of Table 1 shows that the 16 negative differences are not con-
centrated in the results of any one of the four test-construction
methods or in the results of any one of the three sets of data; they
are distributed across the four test-construction methods with the
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Table 1

Values of different tests in each of several
situations - -major project results summarized in

twelve 2 x 2 matrices*

(see text for explanation)

Data set (in order described in text)

1 2 3

027 073 232 255 067 067
012 052 250 237 096 054

0 026 240 260 025 004

027 040 232 242 063 037

028 042 223 247 050 033

035 036 245 227 054 075

038 032 275 267 071 033
014 0 215 245 067 025

*Figures in the table have been multiplied by 1000 to eliminate
decimal points.
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frequencies 5, 3, 5, 3, and across the three sets of data with the

frequencies 5, 6, 5.

Discussion and Conclusions

We conclude that for the types of test-construction problem

studied, tests tailor-made to fit the base rates and seriousness of

errors of a particular local situation are little (if any) better

in that situation than tests which were constructed for other situa-

tions. The results consistently supported this conclusion despite

the diversity in criterion variables, test-construction methods,

item pools, and samples of people studied.

The study, however, was confined to large item pools. Wilks

(5) has shown that the correlations among tests constructed by dif-

ferent Wghting methods can be expected to increase as the size of

the item pool from which the test items are drawn increases. It is

thus not certain whether the above conclusions apply when the item

pool is substantially smaller than the pools of 550 and 600 items

used in the present study.

A Minor Parallel Study

A minor parallel study, using the data and tests already des-

cribed, was carried out on a question related to the major topic of

this project. This second question was whether the choice of cut-

ting point on a test greatly affects the value of the test for a

particular population. This part of the project is of limited

interest for two reasons: (a) it is quite simple to adjust the

cutting point on a test to fit any particular population, using

the Darlington-Stauffer technique mentioned above, so that the

question of how much is lost by failing to do so is unimportant;

(b) it seems obvious that the proper choice of cutting point would

have a great effect on test value. This expectation was fully

borne out by the data. The project consisted simply of repeating

the previous project, with the single change that in this second

phase the cutting point for a test was always left at the value

originally calculated for it using the P value for which the best

was constructed, rather than changing the cutting point to fit

new P values. The data in Table 2 are fully adequate to show the

trend of the data produced by this part of the project. As f.n

Table 1, the data are arranged in twelve 2 x 2 submatrices, each

submatrix corresponding to a different test-construction method

and data set. The upper right and lower left entries in each sub-

matrix are the same as in Table 1; they are thus values of tests

constructed for one value of P and evaluated in a population with

a very different P value. (The same P values were used as were

used in Table 1.) Each of these entries should again be compared to

the other element in the same column; this other entry is the value
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Table 2

Values of different tests in each of several
situations, as a function of placement of

each test's cutting point*

(see text for explanation)

Data set (in order describtd is text)

1 2 3

o 073 188 255 058 067
012 0 250 242 096 0

0 026 232 260 054 004
027 0 232 260 063 0

0 042 198 247 017 033
035 0 245 252 054 0

0 032 205 267 025 033
014 0 215 275 067 0

*Figures in the table have been multiplied by 1000 to eliminate
decimal points.



of the same test in the same situation as the other entry in that
column, but with the cutting point set for the value of P for which
the test was originally constructed, rather than for the value of
P in the population in which test value is being measured.

Inspection of Table 2 shows that the choice of cutting point
makes a large difference in test value. Of the 24 comparisons pos-
sible between the two elements within a column of a submatrix in
Table 2, all but two comparisons are in the predicted direction,
usually by a substantial margin. The two exceptions (on the right
side of the last two submatrices in the center column) are both in
the data set for which test cross-validities were much higher than
are usually found in psychology, due to the nature of the criterion
variable (IQ, divided into superior and retarded groups). In such

data, most individuals are so far from the optimum cutting point
that misplacing the cutting point should not be very serious, thus
giving rise to the two observed differences in the non-predicted
direction. In this respect, it is reasonable to believe that these
data are atypical for psychology.

Summary

Users of standard psychological tests must regularly face the
fact that the population of people for which a test was initially
designed differs somewhat from the local population to which the
test is to be applied. These users must regularly ask whether
the time and expense involved in constructing a new test, tailor-
made to the characteristics of the local population, would be re-
paid by a noticeable improvement in predictive power, trhe present
paper reports on an attempt to determine empirically, for several
test-construction problems, the amount of improvement resulting
when tests are tailor-made to fit one particular characteristic of
a local population--the base rates of the two criterion groups which

the test is designed to separate. The basic procedure used was to
construct a series of tests which were alike in the item pool and
item-selection technique used, and in the two criterion groups which
the tests were designed to separate, but which differed in the re-
lative base rates of the two criterion groups assumed in the con-
struction of the tests. Cross-validation sample data were then
used to estimate the value of each of the tests in populations with
each of the assumed base rates. The purpose was to estimate, for
each of these populations, the extent to which the test tailor-made
for that population exceeded in value tests tailor -made for popula-
tions with different base rates. The results showed no noticeable
difference in the values of the various tests. These results were
consistent across four different test-construction methods studied,
and across three different sets of data which differed in the item
pool and the criterion groups use d4) It is shown mathematically
that the results imply that when decision-theory methods of test
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construction and evaluation are used, no noticeable gain in test
value results from explicitly considering the proper base rates
and the relative seriousness of the two types of misclassification
of subjects.

A minor parallel study showed that the choice of cutting point
on a test has a major effect on the test's value.
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